14+2/3+x^2=85

Simple and best practice solution for 14+2/3+x^2=85 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14+2/3+x^2=85 equation:



14+2/3+x^2=85
We move all terms to the left:
14+2/3+x^2-(85)=0
determiningTheFunctionDomain x^2+14-85+2/3=0
We add all the numbers together, and all the variables
x^2-71+2/3=0
We multiply all the terms by the denominator
x^2*3+2-71*3=0
We add all the numbers together, and all the variables
x^2*3-211=0
Wy multiply elements
3x^2-211=0
a = 3; b = 0; c = -211;
Δ = b2-4ac
Δ = 02-4·3·(-211)
Δ = 2532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2532}=\sqrt{4*633}=\sqrt{4}*\sqrt{633}=2\sqrt{633}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{633}}{2*3}=\frac{0-2\sqrt{633}}{6} =-\frac{2\sqrt{633}}{6} =-\frac{\sqrt{633}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{633}}{2*3}=\frac{0+2\sqrt{633}}{6} =\frac{2\sqrt{633}}{6} =\frac{\sqrt{633}}{3} $

See similar equations:

| 12x/5-2/3=3x/4-3/2 | | 8x+40=6(5x-4) | | 3x+9+4x+x=0x+3 | | w+1-w=7498237492364938746239487329472374937849378472394723978492387492374237497247982374932748384723947923748372947239472347823947239784 | | x+x*5=88 | | -3(y-1)=-9y-3 | | 7x+8=13x-4 | | -8w+14=-5(w-1) | | x=0.5+2.25^-1 | | 1/4(6x-10)=3x-5 | | (2x+9)=42 | | 8(7v+4)=3v-27 | | 8x/3+5/2=35/4 | | 1/4(6x-10)=3-5 | | 1÷3x=22 | | 2x-3(51-x)=12 | | 4w-26=(w-1) | | 4c–6=2 | | 3(3x+4)=10+2(4x-5) | | 3x/2+11=5x/4+17 | | 0=2x^2+36x-9 | | F(x)=8x-x² | | 5-4+7x+1=3x+8 | | 3x+4x+6x=26 | | -y+21^2-y^2=126 | | 10c=100000000000 | | 5^x=3.25 | | 9=v+27 | | x=3(6+2) | | F(x)=10+5 | | 5x=3.25 | | 3h=13 |

Equations solver categories